In Vitro Evaluation of Sunscreen Formulations for UV Protection using EpiDermFT™

OBJECTIVES
To evaluate sunscreen formulations by analyzing cyclopurridine dimer (CPD) formation following solar UV exposure using the EpiDermFT in vitro human skin model.

METHODS
- EpiDermFT tissues (Figure 1) were produced in the MatTek Corporation GMP tissue production facility.
- Tissues were either treated topically with 25μl of SPF 30 formulation or left untreated.
- EpiDermFT tissues were then subjected to solar UV radiation.
- Following UV exposure, genomic DNA was isolated from treated EpiDermFT tissues.
- DNA samples were quantitated for CPD formation.

RESULTS
CPD levels were significantly elevated in EpiDermFT tissues exposed to solar UV radiation (either 150 mJ/cm² or 200 mJ/cm² UVB) compared to sham-irradiated controls. Treatment with an SPF 30 formulation significantly reduced CPD formation in UV-irradiated tissues (Figure 2).

CONCLUSION
Quantitation of cyclopurridine dimers, following solar UV irradiation of the in vitro human skin model, EpiDermFT, can be used for the evaluation of sunscreen formulations for UV protection.

Figure 1. Histology of EpiDermFT. H&E stained cross-section showing that the tissue morphology of EpiDermFT closely parallels that of normal human skin. The epidermis contains basal, spinous, granular and stratum corneum layers and the dermis contains viable fibroblasts (400x).

Figure 2. SPF 30 formulation prevents solar UV-induced CPD formation in EpiDermFT.

Additional applications for the EpiDerm, MelanoDerm and EpiDermFT tissue models include Anti-aging, Skin Whitening, and UV Protection.