The Cosmetics Europe strategy for animal-free genotoxicity testing: Project status update

S. Pfuhler a,⇑, R. Fautz b, G. Ouedraogo c, A. Latil d, J. Kenny e, C. Moore f, W. Diembeck g, N.J. Hewitt h, K. Reisinger i, J. Barroso j

aProcter & Gamble Co., 1 Procter and Gamble Plz, Cincinnati, OH, USA
bKao Germany GmbH, Pfungstädterstraße 92 – 100, D-64297 Darmstadt, Germany
cL’Oreal Life Sciences Research, Aulnay sous Bois, France
dPierre Fabre, 3 Rue des satellites, 31432 Toulouse, France
eGSK, Park Road, Ware, SG12 ODP, UK
fUnilever, Colworth House, Sharnbrook, Bedford, MK44 1LQ, UK
gBeiersdorf AG, Unnstrasse 4, D-20253 Hamburg, Germany
hSWS, Wingerstrasse 25, D-64390 Erzhausen, Germany
iHenkel AG & Co., KGAA, Henkelstrasse 67, D-40191 Duesseldorf, Germany
jCosmetics Europe, Avenue Herrmann Debroux 40, B-1160 Auderghem, Brussels, Belgium

ARTICLE INFO
Article history:
Received 11 October 2012
Accepted 18 June 2013
Available online 27 June 2013

Keywords:
Genotoxicity
Cosmetics
Alternatives to animal testing
3D
Skin
Metabolism

Abstract
The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests:

The completed “False Positives” project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay was improved dramatically by selecting more relevant cells and more sensitive toxicity measures.

The on-going “3D skin model” project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter- and intra-laboratory reproducibility and are entering validation stages.

The completed “Metabolism” project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure.

The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data.

Introduction

The focus of many researchers has been to develop better in vitro tools to replace animal tests, especially in the light of regulations such as the 7th amendment to the Cosmetics Directive (EU, 2003) and REACh (European Commission, 2006). The use of in vitro models is especially relevant to the cosmetics industry which is banned from using animal tests for a number of endpoints, including genotoxicity. Thus, positive outcomes in standard in vitro assays evaluating the genotoxic potential of chemicals can no longer be followed-up with in vivo assays. If genotoxicity is assessed using only in vitro assays, this may well result in the de-selection of many safe new products since these assays have a high rate of positive results that do not correlate with in vivo genotoxicity or carcinogenicity (Kirkland et al., 2005). This problem is recognized as a critical issue and has led to a number of working groups investigating improved approaches for assessing genotoxicity (e.g., International Life Sciences Institute – Human and Environmental Sciences Institute’s (ILSI-HESI) committee on The Relevance and Follow-up of Positive Results in in vitro Genotoxicity Testing (IVGT); www.hesiglobal.org). As part of an international and multi-laboratory collaboration, Cosmetics Europe (formerly “COLIPA”) has funded and driven numerous projects aimed to address the lack of adequate alternatives to traditional in vivo tests and help validate successful models.
The Cosmetics Europe Genotoxicity Task Force was set up to coordinate and drive three main projects. The aim of the “False Positives” project was to optimize current mammalian cell assays by focusing on two aspects of the micronucleus (MN) test, namely the cell type employed and the method of cytotoxicity measurement. The “3D skin model” project aimed to develop and validate a new assay incorporating the use of human reconstructed skin (RS) models with the genotoxicity endpoints, MN and Comet assays. Since the exposure of many compounds is dermal, especially for cosmetics, these models better reflect their use conditions. In order to interpret outcomes from the 3D model assays, knowledge of the metabolic capacity of these RS models is an advantage, especially in comparison with native human skin. Therefore, the “Metabolism” project investigated the enzyme capacities of human skin and compared them with that in RS models and with 2D monolayer cultures of skin cells.

Here, we review the outcomes of the Genotoxicity Task Force projects, outline future research aims and apply the knowledge gained to a decision tree approach to assess the genotoxic potential of chemicals used in the cosmetics industry.

2. The “False Positives” project

One of the drawbacks of the current in vitro clastogenicity assays is that they produce many positive results when compared with negative rodent carcinogenicity data. Indeed, an analysis of published data revealed the rate of misleading positives to be at least 80% when three in vitro assays were combined into a test battery (Kirkland et al., 2005), as requested by several guidelines (such as Reach European Commission, 2006 and the SCCS notes of guidance SCCP, 2009). Therefore, existing and new assays need to show better specificity (i.e. correctly identify non-carcinogens) without compromising sensitivity (i.e. still detecting DNA-reactive carcinogens). The “False positive” project was set up to optimize the in vitro MN test such that the methodology described in the OECD guideline 487 (OECD, 2010) was retained.

A European Center for the Validation of Alternative Methods (EC-VAM) workshop held in 2006 discussed ways to reduce the frequency of misleading positive results. Several suggestions for possible improvements/modifications to existing tests were identified, including the cell lines used and the method of cytotoxicity measurement (Kirkland et al., 2007). Following from these recommendations we started a program which was executed at Covance Laboratories, UK, where we investigated how the predictive capacity of the in vitro MN test is impacted by the choice of cell lines (Fowler et al., 2012a) and toxicity parameters (Fowler et al., 2012b). Others have compared different cell types (Sofuni et al., 1990; Hilliard et al., 2007; Erexson et al., 2001) but this is the first comparison that includes six cell types within the same project and using consistent, GLP-like experimental conditions including the same batches of chemicals, media and formulations (Fowler et al., 2012a). These investigations revealed that certain cell types were more prone to misleading positive responses than others, particularly rodent cell lines (Fig. 1). The p53 compromised rodent cell lines, CHL, CHO and V79, demonstrated poorer specificity than the p53 functional human cell types, TK6, HepG2 and human peripheral blood lymphocytes (HuLy) in response to compounds accepted as producing misleading positive results in in vitro clastogenicity assays (Kirkland et al., 2008). Cells of human origin may also be more favorable than rodent cells since these are more representative of human responses and may contain more human-specific metabolising enzymes and transporter proteins than rodent-derived cell types. Improving specificity cannot be at the expense of compromised sensitivity and thus it was necessary to make sure that the choice of cells did not lead to a decrease in sensitivity. Seventeen carcinogens that are thought to act via genotoxic mechanism (from the Group 1 chemicals from Kirkland et al., 2008) were re-tested in human lymphocytes and TK6 cells. Overall the data show that out of a panel of 17 genotoxic chemicals, TK6 and HuLy detect the majority of them as positive (15 out of 17; 88% accuracy), confirming the high sensitivity of these cells (Fowler et al., 2013).

Investigations of the cell type employed the replication index (RI) as a measure of cytotoxicity; however, it was considered that cytotoxicity may also be a parameter that could influence the outcome of the assay since this is used to select the top concentration tested (Kirkland et al., 2007). For example, one study showed that Relative Cell Counts (RCC) underestimated the toxicity of a number of direct and indirect genotoxins and thus selected higher concentrations for subsequent MN analysis (Fellows et al., 2008). Therefore, additional measures of cytotoxicity of a number of misleading positives in CHO, CHL and TK6 cells were investigated in the “False Positives” project, namely Relative Population Doubling (RPD), Relative Increase in Cell Counts (RICC), RI and RCC. Results revealed that estimation of toxicity based on relative proliferation increases (RPD and RICC) tended to select concentrations in the target toxicity range (50–60%) that give mainly negative MN responses (Fig. 2). Conversely, measurements of RI and SCCP selected concentrations in the target toxicity range gave mainly positive MN responses. Therefore, using RICC and RPD to select concentrations for MN analysis reduces the number of misleading positive results, regardless of cell type, by selecting lower concentrations for analysis than when RCC or RI are used. The use of RICC and RPD does not result in a lower sensitivity of the assay. Others have shown that when RPD and RICC were used as measures of cytotoxicity of 14 known genotoxic agents, all selected concentrations for MN analysis gave rise to expected positive responses in a range of commonly used cell types (Kirkland, 2010). Another consideration is the effect of apoptosis inducing chemicals, such as curcumin and ethyl acrylate, which could contribute to the positive MN responses. In p53-competent TK6 cells, concentrations selected for MN analysis using the RICC and RI toxicity measures also caused increased levels of caspase activity, suggesting apoptosis had occurred. By contrast, when RPD and RICC were used to select concentrations, caspase levels were not significantly elevated, thus apoptosis was avoided and MN frequencies were close to background levels (see Fowler et al., 2012b for more detail on all of the results discussed above).

It was concluded that a combination of careful selection of the cell type and toxicity measurement can significantly increase the
and Comet assays were developed for evaluating the genotoxicity of dermally applied chemicals. The project has been run according to a modular approach:

- Phase 1: Optimization and transferability of method across different laboratories.
- Phase 2: Inter- and intra-laboratory reproducibility.
- Phase 3: Increasing the domain of chemicals tested for predictive capacity and further evaluation of reproducibility.

The two endpoints have so far produced very promising results, as described below and summarized in Table 1.

4. The reconstructed skin micronucleus (RSMN) assay

The in vitro MN assay was adopted for use with RS models to assess the genotoxic potential of a number of chemicals selected by an independent Chemical Selection Expert team, including positive genotoxins with different mechanisms of action, true negatives and misleading positives (Kirkland et al., 2008). The initial protocols were defined (Curren et al., 2006) and then tested in three US laboratories (Mun et al., 2009; Hu et al., 2009). In Phase 1, the RSMN assay method was transferred to Henkel and L’Oréal, both European-based (Germany and France, respectively), which was of significance because the RS models were supplied from a US provider (MatTek, MA). As part of this process, two training workshops were held to standardize the protocol and harmonize scoring of micronuclei, both of which were subsequently described and published by Dahl et al. (2011). The workshops outlined three key issues impacting on the assay, namely the shipping (which should be overnight and under cooled conditions); the solvents used (avoid those that interfere with the air–liquid interface of the EpiDerm™ model); and the subjective nature of the scorer (solved by creating a scoring atlas described by Dahl et al., 2011).

In Phase 2, three coded compounds (N-ethyl-N-nitrosourea (ENU), MMC (both genotoxic carcinogens) and cyclohexanone (non-carcinogen and non-genotoxic)) were tested by three laboratories (Aardema et al., 2010). In addition to a good reproducibility between experiments within each laboratory, there was also a good inter-laboratory reproducibility for all three chemicals tested. Moreover, the genotoxic activity of each chemical was correctly identified in each laboratory.

In Phase 3, the number of coded chemicals was increased to 29 as part of the validation process. All results were sent to ECVAM for decoding and evaluation according to specific pre-determined criteria. Results demonstrated an excellent specificity such that

<table>
<thead>
<tr>
<th>RS Comet assay</th>
<th>RSMN assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>Completed: Optimization of incubation conditions. Correct prediction of 5 dermal non-carcinogens and 7 model genotoxins including genotoxic dermal carcinogens</td>
</tr>
<tr>
<td>Phase 2</td>
<td>Completed: Transfer to different laboratories. Good intra- and inter-laboratory reproducibility of responses to 5 different coded chemicals. Correct identification of positive and negative genotoxins</td>
</tr>
<tr>
<td>Phase 3</td>
<td>On-going: Number of chemicals tested increased to 29. Initial results show improved specificity of the RSMN assay. Requires testing of additional positive chemicals to confirm sensitivity of the assay</td>
</tr>
</tbody>
</table>

3. The “3D skin model” project

The first site of exposure to many cosmetic ingredients is the skin and, as a result, these chemicals may not enter the systemic circulation due to the barrier properties of the stratum corneum, or may be metabolized in the skin prior to entering the systemic circulation. Therefore, the most relevant model in which to test these chemicals is human skin. However, the availability of fresh ex vivo human skin is sporadic which, together with the donor variability and differences in tissue quality, makes the use of this model impractical for routine testing. Alternatives to native human skin are RS models which are prepared from primary human keratinocytes. These have a structure (Ponec et al., 2001) and metabolic capacity (Luu-The et al., 2009; Hu et al., 2010; Götz et al., 2012a,b; van Eijl et al., 2012) similar to that of native skin, making RS models a relevant and predictive model with which to test the genotoxic potential of dermally exposed chemicals. Indeed, the use of RS models in genotoxicity risk assessment has been described recently (Pfuhler et al., 2010). The in vitro human reconstructed skin micronucleus (RSMN) and Comet assays were developed for evaluating the genotoxicity of specificity of clastogenicity assays (see also conclusions from an IWGT workshop reviewed by Pfuhler et al., 2011). The now completed “False Positives” project has undoubtedly led to an improvement in the predictive capacity of the in vitro MNT. The higher predictive power of the in vitro assays will mean that fewer promising chemicals will be dropped from development without compromising safety of these ingredients.

![Fig. 2. Concentrations of misleading positive compounds resulting in 50–60% toxicity in TK6 cells according to different measurements. RPD and RICC tended to result in lower concentrations causing 50–60% toxicity and subsequently, fewer misleading positive responses. Bars with “+ve MN” indicate that the concentration indicated caused a statistically significant increase in MN formation. (Reproduced from Fowler et al., 2012b).](https://example.com/fig2.png)

![Table 1](https://example.com/table1.png)
approximately 90% of the experiments predicted in vivo non-genotoxic non-carcinogens correctly (Fautz et al., 2012). Of the 29 chemicals tested, only 8 chemicals were classified as carcinogens with a suggested genotoxic mode of action and 21 were non-carcinogens. Therefore, the current dataset is biased towards non-carcinogens with the total number of carcinogens in the dataset considered too low to draw a final conclusion about the sensitivity of the RSMN assay. More coded compounds will be tested in the next project phase with a focus on carcinogens.

During the testing, it was noted that a couple of compounds precipitated, which was not considered in the initial criteria, but should be included in future evaluations. A misleading negative may arise if the intended concentration is not reached or false positives can be caused by precipitation due to practical issues such as difficulties in scoring (especially with compounds that fluoresce at the same wavelengths as acridine orange) or disruption of the air-liquid interface which can cause MN formation (Dahl et al., 2011).

In order to speed up the scoring of the MN, efforts towards automation are on the way. This should enable analysis of a greater number of cells, resulting in a higher statistical power of the assay and incorporate an automatic cytotoxicity measurement as part of the analysis. Initial results show good comparisons between manual scoring and flow cytometric methods (unpublished data).

Some genotoxins require metabolic activation; therefore, we have investigated a number of chemicals that fall into this category, namely 4-nitroquinoline-n-oxide (4NQO), cyclophosphamide, dimethylbenzanthracene (DMBA), dimethylnitosamine (DMN), dibenzanthracene (DBA) and benzof[a]pyrene (BaP). Since the skin has been shown to have a very low phase 1 (normally bioactivating) capacity, it was considered that these chemicals may require a longer incubation duration in order to generate sufficient levels of the ultimate genotoxin. However, extending the dosing regimen from 48 h and two doses to 72 h and three doses did not always change the outcome of the assay, such that cyclophosphamide and DMBA were positive and DBA and DMN were negative using both dosing regimen. The outcome of the assay was only changed for 4NQO, which was negative in the standard 48 h dosing regimen, but positive with the 72 h treatment (Aardema et al., 2012). BaP gave mixed results, possibly due to this chemical precipitating at high concentrations and to alterations in metabolic enzyme levels caused by BaP (Götz et al., 2012c). The results for DBA and DMN may be expected since, this chemical precipitating at high concentrations and to altera-

Some genotoxins require metabolic activation; therefore, we have investigated a number of chemicals that fall into this category, namely 4-nitroquinoline-n-oxide (4NQO), cyclophosphamide, dimethylbenzanthracene (DMBA), dimethylnitosamine (DMN), dibenzanthracene (DBA) and benzof[a]pyrene (BaP). Since the skin has been shown to have a very low phase 1 (normally bioactivating) capacity, it was considered that these chemicals may require a longer incubation duration in order to generate sufficient levels of the ultimate genotoxin. However, extending the dosing regimen from 48 h and two doses to 72 h and three doses did not always change the outcome of the assay, such that cyclophosphamide and DMBA were positive and DBA and DMN were negative using both dosing regimen. The outcome of the assay was only changed for 4NQO, which was negative in the standard 48 h dosing regimen, but positive with the 72 h treatment (Aardema et al., 2012). BaP gave mixed results, possibly due to this chemical precipitating at high concentrations and to alterations in metabolic enzyme levels caused by BaP (Götz et al., 2012c). The results for DBA and DMN may be expected since, this chemical precipitating at high concentrations and to altera-

Some genotoxins require metabolic activation; therefore, we have investigated a number of chemicals that fall into this category, namely 4-nitroquinoline-n-oxide (4NQO), cyclophosphamide, dimethylbenzanthracene (DMBA), dimethylnitosamine (DMN), dibenzanthracene (DBA) and benzof[a]pyrene (BaP). Since the skin has been shown to have a very low phase 1 (normally bioactivating) capacity, it was considered that these chemicals may require a longer incubation duration in order to generate sufficient levels of the ultimate genotoxin. However, extending the dosing regimen from 48 h and two doses to 72 h and three doses did not always change the outcome of the assay, such that cyclophosphamide and DMBA were positive and DBA and DMN were negative using both dosing regimen. The outcome of the assay was only changed for 4NQO, which was negative in the standard 48 h dosing regimen, but positive with the 72 h treatment (Aardema et al., 2012). BaP gave mixed results, possibly due to this chemical precipitating at high concentrations and to alterations in metabolic enzyme levels caused by BaP (Götz et al., 2012c). The results for DBA and DMN may be expected since, this chemical precipitating at high concentrations and to altera-

6. The “metabolism” project

This project investigated xenobiotic metabolising enzymes (XMEs) in native human skin, RS and monolayer cultures of skin cells using both a proteomic approach and measurement of substrate metabolism. The proteomic methods included immunoblotting and a technique involving LC-MS/MS analysis of peptides and subsequent software analysis (van Eijl et al., 2012). The latter method has the advantage of a much higher sensitivity than traditional immunoblotting techniques and it allows for a comprehensive analysis of over 2000 XMEs. Phase 1 and 2 XME activities were measured using enzyme-selective substrates for cytochrome P450s (CYPs), sul-
fotransferases (SULTs) and UDPGA-glucuronosyltransferases (UGTs) and glutathione S-transferases (GSTs) (Götz et al., 2012a, b,c). CYP 1–3 family proteins were not detected in native whole human skin or any of the in vitro models tested, which reflects the low mRNA expression of these CYPs reported by others (Luu-The et al., 2009) and the low or lacking metabolism of CYP-selective substrates in our studies (Götz et al., 2012a). The abundance of CYP1–3 proteins in human skin was estimated to be at levels of at least 300-fold lower than that of liver. However, there were multiple other phase 1 XME proteins that were present in significant levels, such as alcohol dehydrogenases, aldehyde dehydrogenases, amine oxidases and epoxide hydrolases. GST proteins were the most abundant of the phase 2 enzymes investigated, and were present in both native human skin and EpiDerm™ models. GST Pi was also identified as the most abundant isoform (van Eijl et al., 2012), which correlates with the high mRNA expression of this enzyme (Luu-The et al., 2009, Hu et al., 2010). The GST substrate, CDNB (Sherratt and Hayes, 2002), was metabolised at appreciable rates in whole skin (~20 nmol/min/mg), although this is still lower than that reported to be present in human liver (van Eijl et al., 2012, Götz et al., 2012b). The potential routes of metabolism in human skin and liver, based on their proteomic XME profiles, are depicted in Fig. 3. The overall results from this project supported the view that skin tended to be more of a detoxification organ (in contrast to the liver) and that the levels of XMEs were all generally much lower than the liver.

The XME profiles, using Affymetrix gene analysis, of different donors of EpiDerm™ models has been reported to be very similar (Hu et al., 2010) but there are no reports on how and if XMEs change during the course of an assay. Therefore, measurement of XMEs was adapted to determine how genotoxic compounds affect XME activities in EpiDerm™ models used under the conditions of an endpoint assay. This was indeed the case for BaP, cyclophosphamide and BaP and cyclophosphamide, both of which require bioactivation. GST proteins were also identified as the most abundant isoform (van Eijl et al., 2012), which correlates with the high mRNA expression of this enzyme (Luu-The et al., 2009). The GST substrate, CDNB (Sherratt and Hayes, 2002), was metabolised at appreciable rates in whole skin (~20 nmol/min/mg), although this is still lower than that reported to be present in human liver (van Eijl et al., 2012, Götz et al., 2012b). The potential routes of metabolism in human skin and liver, based on their proteomic XME profiles, are depicted in Fig. 3. The overall results from this project supported the view that skin tended to be more of a detoxification organ (in contrast to the liver) and that the levels of XMEs were all generally much lower than the liver.

The XME profiles, using Affymetrix gene analysis, of different donors of EpiDerm™ models has been reported to be very similar (Hu et al., 2010) but there are no reports on how and if XMEs change during the course of an assay. Therefore, measurement of XMEs was adapted to determine how genotoxic compounds affect XME activities in EpiDerm™ models used under the conditions of an endpoint assay (Götz et al., 2012c). The genotoxins used were BaP and cyclophosphamide, both of which require bioactivation to their ultimate genotoxic metabolites. BaP caused a marked increase in ethoxyresorufin O-deethylase (reflecting CYP1A and CYP1B activity, also responsible for the bioactivation of BaP) (Shimada and Fujii-Kuriyama, 2004) activities even 24 h after the first dose; and these raised levels continued until the final dose was applied (three doses in total and 72 h of exposure). Since the CYP1A1/1B pathway was significantly increased, this would suggest that BaP may well cause an increase in MN formation in the EpiDerm™ models in the RSMN assay. This was indeed the case for two experiments but not a third (Aardema et al., 2012), suggesting that there is an even balance of bioactivation via CYPs and detoxification by GSTs (which were not induced by BaP) which can be tipped either way in different experiments. Unlike BaP, cyclophosphamide did not alter any of the enzymes measured (Götz et al., 2012c), despite their involvement in its metabolism. Unlike BaP, cyclophosphamide was consistently positive in all experiments in both laboratories that tested this compound (Aardema et al., 2012). This suggests that the balance of metabolism of cyclophosphamide in EpiDerm™ models is towards bioactivation. Overall, the measurement of certain XME activities in EpiDerm™ models treated under the conditions of an endpoint assay helped in the interpretation of the outcome.

7. Summary

The Cosmetics Europe Genotoxicity Task Force projects, which have been running over the course of the last five years, have helped improve predictive capacity of in vitro clastogenicity assays, and resulted in an increased understanding of the methods used to predict the in vivo genotoxic potential of dermally applied chemicals. Important protocol modifications, namely choice of the cell type and cytotoxicity measurement, have resulted in improved specificity of the MN test such that over 60% irrelevant positive findings could be prevented by using the optimized methods. This in itself will lead to an increase of the predictive capacity of the initial test battery of in vitro tests and therefore reduce the number of chemicals de-selected due to misleading positives. The “3D skin model” project has shown that genotoxic endpoints, such as the MN and Comet assays, can be adapted to RS models and that the protocols developed are robust, as demonstrated by the high degree of reproducibility between and within laboratories when coded compounds were tested. By establishing good predictivity of the RS MN and Comet models, together with the confirmation that the RS models mimic native human skin in terms of their metabolic capacity (demonstrated in the “Skin Metabolism project”), our results will support their use in follow-up tests in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data.

Fig. 3. Potential routes of xenobiotic metabolism in skin and liver. The size of each arrow is proportional to the number of XMEs detected that may catalyze each bioconversion indicated. (Taken from van Eijl et al., 2012 with kind permission from PLoS ONE, http://dx.doi.org/10.1371/journal.pone.0041721.g004.)
Conflict of interest

There are no conflicts of interest for any of the authors.

Acknowledgements

This work was funded by the Cosmetics Europe. The “3D skin model” project received input from ECVAM. Work by Covance and TNO was co-funded by ECVAM and UK NC3Rs. We would like to thank David Kirkland and Paul Fowler for their dedicated contributions to the “False Positives” project. We would also like to thank Marilyn Aardema for her role in the RSMN project and Raffaella Corvi for her help with steering the program.

References

